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A method of constructing a continuous medium possessing certain discrete structural pro- 
perties which is given here, is based on a micromodel of a linear chain. The method 
yields the spectrum of the initial discrete system with sufficient accuracy, even in the 

long wave approximation. The dynamics of the constructed continuous medium is de- 
scibed by the equations of displacement of the center of mass of a macrocell and by the 
equations of moments of various orders. The spectrum of this medium tends to the com- 
plete spectrum of a linear chain (for both,a simple and a Complex chain) with increasing 

number of moments. 

1. Let us consider a simple, linear chain with period a, Equations of motion are given 

bY 
(1.1) 

where sp is the displacement of the particle p from its equilibrium position and CL,.v are 

force constants characterizing the interaction between the particles p and v . For two 

adjacent particles, these equations have the form 

,>18 .. = c (s *- “s ’ f 
i* 11 1 pr ‘pi ) (1.2) 

Another method of approach consists of forming macrocells from groups of it’ adjacent 

atoms ; particle p will then belong to the r -th macrocell and will be assigned an index 
n such, that IL = fi(r - 1) -1 n, TiL z I,,Q =- cz‘Y(r - 1) _t on (1.3) 

Then the system (I, 2) can be rewritten as follows : 

ms:” T:: c (,s;; 1 - ‘,T,,?’ + sy -1) (n - I, . . . N) 

(“,” G s;.,, sy EE s$,J 
(1.5) 

while the general system (1.1) will assume the form 

,,z,$;‘* = 2 c;;; ” (.sF, i’ - “,“) (15) 

It is known from [l] that using the normal modes of oscillation 

.s/’ = A CT.Z~ i(l<x’“, - CO t) (1.6) 

of Eqs. (1. I) we can find the spectral curve 

(0 = v(k), O,<k<,<2 nla (1.7) 

Function T(S) is even with respect to the axes k = 0, x I a, 2x J a, In particular. 
when we have(l.4) and N = Z 

cp (k) = 1//IC/m 1 sin r/b ka 1 (1.8) 
The spectral curve (1.7) can be constructed by specular reflections of the multivalued 

curve o = s+(k,), U K: kl < b. i a4V (1.9) 

defined on a shortened interval. 
Let now the value k := k, given by 

896 
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(1.10) 

correspond to each value k, from (1.9), with p fixed. Using these values for k, we obtain 

from (1.6) +n = A exp (i2npn / N) esp i(S&z,.” - 0 t) (1.11) 

Inserting now (1.11) into (1.5), we obtain a specific spectral curve (1.7) for each 

value of p . When k, is connected with k, by the relation (1.10). we can also use (1.9) 

to obtain the values of the frequencies ~1 in (1.7) for any k, , i. e. we have 

(I = qP(kl), 0 < k, < 2n I aN (k, = 2np I a-V $ k,) 

0 

E 
These relations represent the law of specular reflec- 

IQV) 
tion (see Fig. 1). When the fixed value of p is even, 

the curve QP(kl) is reflected with respect to the axis 

\c\l 
N=B ]c- 2x j ~,lrand transferred to the corresponding inter- 

a 
4 1 

val of the values of k, .When p is odd, the curve 

Za n 
(pP(kl) is transferred directly onto its interval of the 

aN a values of k,,. We note that for odd values of N , the 

Fig. 1 
curve q(k) transforms into itself on the interval 

In this manner we construct the whole of the function q(k) on the interval from 0 to 

2X / a. 

This fact, although unessential in the study of discrete systems, becomes important 

when the couple-stress mechanics is constructed for continuous medium using long wave 

approximations. In the latter case the curves qp(k,) on the interval 0 d k, s; 2.s;u.V can 

be replaced by the tangents to them at the point k, = 0 if the number of particles inclu- 

ded in a macrocell is sufficiently large. 

Let us now replace the system of point functions srTL (t) with a system of N continu- 

ously differentiable functions sI1 (z, t) of the coordinate and time coinciding with snl 

at the points x= zp’l and satisfying the system of equations obtained from (1.5) by the 

formal transition to the continuous form. We can see from (1.4), that in the particular 

case of a short-range interaction, these equations assume the form 

ms,” = C[S,,~ (x -;m a) - 2.sn(z) -1 s,+~(x - a)] (n = 2 ,... X) (1.23) 
%(z - a) s s,v (5 - a), s.k-+l (z -I- a) z sI(.z -I- a) 

Setting now s,.'l = A, exp i(kr,.fl - u~t) (1.1’1) 

s, == u, esp i(kx - cl) t) 

and inserting (1.14) into (1.4) and (1.13). respectively, we find that the corresponding 

secular equations coincide. This means that the spectrum of continuous medium described 

by Eqs. (1.13) and the spectrum of the initial linear chain coincide completely. 

Ler x denote the number of interacting particles. If we limit ourselves to second order 

derivatives in the expansion of si(.t. k ‘~0) near the point J (long wave approximation), 

then the spectrum of (1.13) will obviously consist of the tangents to the corresponding 

curves (pp(kl) for k, = 0 and, as shown above, the set of these tangent lines will tend to 

the complete spectrum of a discrete system with increasing number IV of particles incor- 

porated in the macrocell. 
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A continuous medium with a more accurate spectrum can be obtained in a similar 
manner proceeding from a complex linear chain whose cell consists of two different par- 
ticles of masses ml and m2 with a period a, and taking into account the interaction of 

the adjacent Cells (*). Equations of motion of such a system have the form 

mrsl” =z Cl (SZ - s;, + c: (,s;_, - SF) + c: (sb, 1 - 2s; + sJ_;) + Ca (,sZ, L - s:, ( 1.13) 

?n,.+;.. Z Cl (s,l- 3.2) + c2 (spl+, - 5.2) -+- C8 (& - q.2 + .s,f_,) + c4 (.& - s,,Y 

where r S as before, denotes the number of the cell and Ci (i = 1,2,3,4) are the constants 

of interaction. Let us combine the groups of fl adjacent cells into macrocells and re- 
number the particles (in the place of f and n -= 1,2 we introduce the macrocell num- 

ber R and the number 1~ = i ,2... 2N) denoting a particle in the macrocell) so, that 

2r -I- (72 - 2) = 2 N(R - 1) -t p 
51. n = ar -1 z*, x1=2 0, x2 = b 

(1.26) 

Then in place of (1.15) we have 

%4. tt ?“” :z.; Cr (Sy;tj - SRt”) + C*(,$<~* --- SnP) -+ Cs(sp* - 2SH~ + 

+ s$-‘) f Ca (,:*a - Sri p”f 

fL== t, 3, SRO _7- S”,“r,, .-I - 2N-t “n = Sri--- (1.27) 

yc-z&Y- l,“N, s;;v% ,s& ,\H .2N a2 _ s2 
R.1 

Considering now the solution of (1.15) in the form of (1.6) where the wave vector is 
0 \c k < 2 n i a, we obtain from (1.15) the spectral curves 

0 = R(k), w = cp&) (1.18) 

The same frequencies can also be found using the method given above, from two mul- 
tivalued curve’ defined on a shortened interval 

W := (crp (IQ), w = (pzls (k,), 0 < k, < 2n i aN (1.19) 

provided that a corresponding value of k, given by (1.10) is taken for each k,, with the 
value of p fixed. 

IR this case the substitution of 
7% 

s 1E _-il expi (T krzr - ot)expi 
2SP -(~-_-N-1) (n-=-If 

P n N 

(1.20) 

2zp b 
s ‘I = An exp i ($ k,xrn - ot) expi 7 

2N-P ‘_ 
(n =I 2) 

P i 
I;;- - -~ 2 1 

into (1.15) yields the curves (1.19) such, that 

‘P&t) = (P&J. (PZP (W = %(k,) (1.3) 

i, e. the same law of specular reflection is observed in constructing ‘pr and ‘~9 in terms 

of qlp and (pzp . Passing further k, the field, i.e. replacing s,“(t) with continuously dif- 
ferentiable sp I;= sI, (2, r) I r=sRI = sRP (tf we shall require that the latter satisfy the 

following system of equations : 

*) This formulation is made for the sake of simplicity. 
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p = I,3 . . . 2N - 1 

mss ** = CI [s,_, (z - b) - sp WI + G bp+l (r + b - aI - “iI* + 

+ C:bpt2 (r + a) - 25,. + s,,._~ (z - a)] + C4 Iya (=---a--b) - %I 

p = 2,4 . . . 2N 

(1.2’) 

It is easily verified that the secular equations for (1.17) and (1.22) coincide. Conse- 
quently,for the continuo~ medium corresponding to a complex linear chain,the spectrum 

in the long wave approximation will also consist of tangents to ~rp(k,) and qplP (k,) at 
the point k, = 0, When the values of N are large, the set of these tangents will describe 
the complete spectrum of the discrete system with sufficient accuracy. The present 
method can naturally be extended to spatially periodic structures. When the, number of 

particles included in a macrocell becomes sufficiently large, the corresponding field 

equations of motion will reflect the dynamic microstructural properties of the medium. 

a, The classical theory of elasticity based on the concepts of mean density, mean 
velocity and mean displacement together with those of stress and deformation tensors 

appears, from our point of view, to represent a long wave approximation, and can only 
yield information on the motion of the centers of mass of the macrocells, Couple-stress 

theory of elasticity on the other hand, introduces phenomenolo~cal field concepts (inter- 
nal moments), thus giving a more complete description of the behavior of a solid body 
and, apparently, gives an entire and correct description of the behavior of a system of 
particles in the acoustic range of the spectrum [Z]. However, the couple-stress theory 
of elasticity takes into account the oscillations which also pertain to the optical branch 

of the spectral curve 133. It seems therefore appropriate to employ yet another approach 
to constructing the latter theory, containing a more accurate description of the motion 
of the macrocells. 

Let us consider a complex linear chain of period 2, each of its cells containing IV dif- 
ferent particles. We shall assume the interaction to be such, that the corresponding series 
and expansions of the potential energy converge. Equation of motion of the n-th particle 

in the r -th cell has the form 

(2.9) 

c E cy,r, cil’?f = 1 

Here u2krtp are the dimensionless interaction constants, possessing the following pro- 
perties : ar, r+P= ar+P, r, rr rP 

nk kn 
ar’ r+P = Q nn 

m 

(2.2) 

%P kp 

Instead of the absolute displacements s,.~ of each particle of the cell, we shall now 
consider the relative displacements uPn and the d~placement s, of the center of mass 
of the cell. The coordinate tr of the center of mass of a cell is, as usually, given by 
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(2.3) 

n=, ?l=, 

Here xrn denotes the absolute coordinate 
absolute displacement sr” is given by 

of the n -th particle in the r -th cell. The 

N 

SrR = sr + UrR, sr=xr- x,=2,- &iIL,xrn (2.4; 

7l=l 
where X,R is the equi~brium position of the a-th particle in the r -th cell. From (‘2.3) 

follows 

i pnu: = 0 (2.5) 
n’ 1 

Let us obtain a set of N - 1 linearly independent variables for each r . We shall 
call them moments and assume them to be relative to the center of mass of the r -th 

cell 

mp k= &&“(5”)k (k=0,1,...N-1) (2.6) 
n=1 

Here E” is the equilibrium coordinate of the n-th p-rticle relative to the center of 
mass of the cell (due to symmetry of the chain in its eq~librium position En is indepn- 
dent of the cell number). From (2.5) we see that m,” = 0. Solving the set of linear 

equations (2.6) for 16~ atn, we obtain 
iv-1 

un-- ,. -+- ? Pnkmrk 

FT2 k=l 
(2.7) 

(2.8) 

The matrices fink are minors of the determinant related to D 

1 1 . . . 1 1 

5’ 4% . , . p-1 cN 

D= (<1)2 (<2)2 . . . (P')2 (ENY 
, . . . . . . . . . . . * - . . . . . 

p)N-1 q+‘-1 I . . gN-l)N-1 gN)N- 

Mechanical meaning of the moments introduced above can be ascertained from the 
kinetic energy expressions T, and from the moment of momentum of various orders Q,.” 
of the cell. On the giaunds of (2.6) we have 

Qrk= $,mir*,'.(i$"=Mm,"* 

i :1 

(2.9) 

Expression for the kinetic energy density in terms of an additional parameter (“micro- 
distortion”) which usually appears in the couple-stress theory of elasticity, follows from 
(2,9) on the transition to the field functions, with only the first moment taken into 
account, 
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Using (2.3) and (2.4) we obtain an equation for s, by performing summation of (2.1) 
over n and taking into account (2.6) with (2. ‘7) 

MS," =CH, 
N-I 

n, k=l 

Equations for m,.k are obtained by multiplying (2.1) by (5”)” , summing over n and 
utilizing (2.6),(&T) and (2.10) M,,+k” = cQ,k 

N-l (2.11) 

q=1 P, 9 

(2.12) 

Here 69k is the Kronecker delta, while the prime accompanying the summation sign 
denotes summation over all p except p = 6. 

Equations of motion of a one-dimensional continuous medium are obtained from 

(2.10) and (2. ll), using the procedure described in Sect. 1 and taking into account the 
fact that the functions s, and mkr are given at the points zt+.,while srn are given at dif- 
ferent points zr* for some fixed value of r. Limiting ourselves to the second derivatives, 
we can write the equations of motion for S(Q) and mk(z, t) in the form 

(2.13) 
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Assumption that N denotes a set of identical particles or identical cells, does not lead 
to any significant simplification of Eqs. (2.13). Additional conditions will however be 
imposed on the constants of interaction appearing in these equations. In this case we 

shall have a continuous medium constructed with the help of macrocells. In the long 
wave approximation this medium will be described by equations of displacement of the 
center of mass of the cell and by equations of moments of various order. Increase in the 

number of particles in a macrocell will lead to the sharpening of the spectrum of the 
initial discrete system. If the macrocell coincides with the real cell of the discrete sys- 

tem, we note that we can draw conclusions from (2.13) concerning both, the acoustic and 

optical oscillations of the system at small k only. In order to make the spectrum more 
precise, at least two cells of the initial chain must be included into the macrocell. 
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We consider the problem of weak discontinuities in quasi-linear hyperbolic systems and 
obtain transport equations for the case when the characteristic surfaces of the system 

have constant multiplicity, we also investigate weak discontinuities in magnetogasdy- 

namics for the case when the characteristic surface is adjacent to a region of rest 
Authors of cl] deal with the problem of ~o~gation of weak discontin~~es in linear 

hyperbolic systems when the unknown functions of the system and their derivatives up 


